How Tupras Refineries Uses Industrial AI to Save Energy, Improve HX Operations

Efficient heat exchanger (HX) operations is critical for plants to improve energy efficiency and meet sustainability goals. Lack of visibility into the fouling levels of HX units and the inability to predict future fouling levels are major challenges while scheduling maintenance work. Although rigorous process modeling can give insights to current fouling levels, prediction of future fouling levels has been difficult.

In this on-demand webinar, experts from the Turkish Petroleum Refineries (Tupras) share how rigorous process simulation (Aspen HYSYS®) combined with Industrial AI-powered Aspen Hybrid Models™ enables them to quickly build accurate digital twins of heat exchanger units. Learn how these innovations help them:

  • Gain accurate insights into the fouling levels of HX units and predict future fouling levels
  • Discover other key factors that contribute to fouling
  • Streamline workflows for maintaining digital twins
  • Quickly take advantage of AI technology without requiring any expertise in data science
  • Model unique HX units that could not be simulated before

Discover how you can use Industrial AI to save energy and improve HX operations.

How Tupras Refineries Uses Industrial AI to Save Energy, Improve HX Operations

Why we collect this data

AspenTechは、当社の事業、可能な限り最善の製品やカスタマーサービスのご提供、そして全体的なユーザエクスペリエンスに関わるさまざまな理由でお客様の個人データを収集および処理する場合があります。当社はお客様の個人データを使用して適宜、アンケートや調査の管理、契約サービスの正確な提供、イベントへの登録、お客様の好みの理解、および不正または不正な活動の検出と防止を行う場合があります。個人データの収集と処理の詳細については、こちらからAspenTechのプライバシーおよびセキュリティポリシーを参照してください。

How Tupras Refineries Uses Industrial AI to Save Energy, Improve HX Operations

Hello . If this is not you

Thank you for viewing this on-demand webinar

If you weren't redirected, click here