

JUMP START GUIDE

Estimating Electrolyzers Using Equipment Model Libraries in Aspen Capital Cost Estimator™ (ACCE)

1996

1998

Create Cost Libraries to Estimate Equipment for Sustainability Projects

Table of Contents

Hydrogen Production Process	2
Estimating Electrolyzers	2
Estimating Electrolyzer Units in ACCE	3
Overview	3
Task 1 – Create an Equipment Model Library	4
Task 2 – Add an Electrolyzer Unit to an ACCE Project	7
Task 3 – Evaluate the Electrolyzer and Explore Reports	8
Conclusion	11

Hydrogen Production Process

As the world races toward sustainable energy solutions, more and more capital projects revolve around green processes and technology. Such is the case with hydrogen, where electrolysis plays a central role in the quest to reach sustainability goals.

Electrolysis is the chemical process of splitting water molecules into hydrogen and oxygen using a direct current of electricity. To achieve this separation, a device called an electrolyzer is used. This device contains electrodes that attract ions of opposite charge, so the positively charged ions (hydrogen) move toward the negative cathode, and the negatively charged ions (oxygen) move toward the positive anode. In this process, electrons are effectively introduced at the cathode as a reactant and removed at the anode as a product.

Hydrogen Production: Electrolysis | Department of Energy (https://www.energy.gov/eere/ fuelcells/hydrogen-production-electrolysis)

Estimating Electrolyzers

There are different types of industrial-scale electrolyzers, varying by size and function. They can be built using many different, often patented, technologies and are built to operate at different power capacities. Electrolyzers often require additional pieces of equipment, such as pumps, power electronics, a gas separator and other auxiliary components like storage tanks.

Source: www.fuelcellenergy.com

Given all these possible variations, when estimating these units, it's very important to keep consistency in their pricing data, deciding to either estimate the full system as a single unit, or separating the main electrolyzer unit from the rest of the other required equipment pieces, and maintaining this convention for all estimated electrolyzer units.

Estimating Electrolyzer Units in ACCE

As mentioned, there are a number of possibilities and variables to consider when trying to define the specifications of an electrolyzer. Aspen Capital Cost Estimator (ACCE) enables users to enter their own custom pricing data to estimate specialized equipment not currently available in its default cost library. One of these methodologies involves the creation of an Equipment Model Library (EML), which allows users to store pricing, labor and weight data corresponding to the different types and capacities of electrolyzers that could be required for your projects. EMLs provide a fast and easy way to enter user data into ACCE and enable you to reuse this data as many times as needed in multiple projects.

Overview

Using this guide, you will create an Equipment Model Library (EML) in ACCE to store cost, labor and weight data corresponding to a Proton Exchange Membrane (PEM) Electrolyzer. This process can be repeated to add data for any type of equipment in ACCE. You will follow best practices for consistent library data, entering equipment quotes that have been normalized to include the same elements for all capacities of the PEM Electrolyzer.

Task 1 - Create an Equipment Model Library

- **1.** Open Aspen Capital Cost Estimator. If there is any project currently open, make sure to save your file and close it by clicking **File | Close**.
- 2. Locate the **Palette** on the right-hand side of the window and select the **Libraries** tab.
- 3. Expand the Cost Libraries folder to reveal the Equipment Model Library folder.
- **4.** Expand the **Equipment Model Library** folder and right-click on the folder with the **units of measure** appropriate for your projects, then click **New.**

Note: An EML created in Inch-Pound units will only be available for use in a project that uses this same unit set and will not be available in projects using metric units.

5. Enter *EX_Electrolyzers* as the library name and provide *Example Electrolyzer Library* as the description. Click **OK** when done.

New[Equipment Model Library]		\times
File Name : EX_Electrolyzers	ОК	
File Description:	Cancel	
Example Electrolyzer Library	Help	
Enter the name under which you want to save this file. The name must be unique.		

- **6.** Enter today's date as the **base date**. Leave the default **currency base** and click **OK**. Note that a new EML is available in the **Library** tab of the Palette.
- 7. Click the Add button in the Library window to begin adding the data for PEM Electrolyzers.

- **8.** Type *PEM1* as the Reference ID of the new item and click **OK**. Next, a form will pop up allowing you to enter all data corresponding to the PEM Electrolyzer. All cells with the red border above the DATA TABLE section must be filled.
- **9.** Enter the following information.

Name	Units	Item 1
Remarks 1		
Remarks 2		
Item description		PEM Electrolyzer
Currency unit for matl cost		
Source of quote		×
Installation option		×
Equipment class		SE
Equipment type		ELECTROLY
Material		SS
Code of account		103
Sizing method		LINEAR
Primary sizing parameter		CAPACITY
Primary size unit of measure		\sim
Descriptive parameter A		
Unit of measure A		·
Descriptive parameter B		
Unit of measure B		<u>`</u>
Equipment setting option		×
DATA TABLE		

EMLs provide five different **sizing methods**, depending on the tendency followed between the equipment capacity and its corresponding material cost.

The first four sizing methods allow you to perform interpolation and calculate costs of any equipment capacity between the smallest and largest capacity values. The last option, Discrete, does not let users do any interpolation and will only allow users to select the entered capacity values in the estimate.

10. Set **KVA** if working in IP units or **MEGAW** if working in Metric units in the **Primary size unit of measure** cell.

11. Enter PWRDRVR in **Descriptive Parameter A** and select **HP** if working in IP units or **KW** if working in Metric units in the **Unit of measure A** cell.

Item description	PEM Electrolyzer
Currency unit for matl cost	
Source of quote	
Installation option	
Equipment class	SE
Equipment type	ELECTROLY
Material	SS
Code of account	103
Sizing method	LINEAR
Primary sizing parameter	CAPACITY
Primary size unit of measure	KVA
Descriptive parameter A	PWRDRVR
Unit of measure A	HP

12. Use the data in the following table to complete the data entry. Use the next screenshot as reference to enter the data.

Develop Equipment Library N	Model	
OK Cancel		
Name	Units	Item 1
DATA TABLE		
Size value 1		1,000
Cost at size value 1	USD	1,500,000
Setting labor at size value 1		180
Weight at size value 1	LBS	20,000
Size value 2		
Cost at size value 2	USD	

Disclaimer: Please note that the following data is for illustration purposes only and does not correspond to any real equipment.

DAT	A TABLE ENTRY	Data Value	(1)	(2)	(3)
х	SIZE VALUE	Capacity, KVA [MEGAW]	1,000 [1]	5000 [5]	10,000 [10]
Y	COST VALUE	Cost, USD	1,500,000	6,000,000	14,000,000
Y	SETTING VALUE	Setting, Man-Hours	180	400	700
Y	WEIGHT VALUE	Weight, LBS [KG]	20,000 [9,100]	40,000 [18,200]	70,000 [32,000]

13. Click **OK** when finished and then close the Library window.

Task 2 - Add an Electrolyzer Unit to an ACCE Project

- **14.** Open the example scenario Expansion P6 clicking **File | Open**. Go to the **Project View** tab once the project loads./
- **15.** Add a PEM Electrolyzer to the PRODUCT STORAGE area. Right click on the area and select **Equipment Model Library** from the component browser.

ICARUS Project Component Selection				\times
Project Component Name				
Project Components				
Process equipment Plant bulks Site development Buildings Unit cost library Equipment model library				
ок с	ancel	Select	Help	~

- **16.** Enter *PEM Electrolyzer* as the component name and click **OK**.
- **17.** Select the library file EX_Electrolyzer and click **OK**, then select the item PEM1 (PEM Electrolyzer) and click **OK**.

Select an Equipment Model Libr	rary File		×
Equipment Model Library Files	Equipment Model Library Descriptio	n	
EX_ELECTROLYZER SAMPLE	Example Electrolyzer Library	^	ОК
			Cancel
			Help

18. Enter the following specifications in the component PEM Electrolyzer form.

Тад	PEM-100
Capacity	6,000 KVA [6 MEGAW]

19. Apply your changes. Once you hit the Apply button, ACCE will use the library data to calculate material equipment cost, setting labor hours and weight for the electrolyzer. These results are visible in the same component form.

Task 3 - Evaluate the Electrolyzer and Explore Reports

20. Click on **Tools | Options | Preferences** and go to the **Reporting** tab, set the Item Report to be the **Reporter Report**.

erence	
neral Forms Spreadsheet Views Backup/Recovery Process Locations Schedule Unit Cou	ts Reporting Miscellaneous
SQL Server Information	
Host \Instance Name	
(LocalDB)\MSSQLLocalDB_EEV14	Test Connection
Repair SQL LocalDB Instance	
After Project Evaluation	
✓ Display results after evaluation (ACCE: CCP report, APEA: investment analysis)	
✓ Launch Aspen Economic Evaluation Reporter Application	
Run Excel reports selected via 'Save Selections' in Reporter	
Excel report options	
Always overwrite previously run Excel reports	
C Append to the existing Excel reports	
C Prompt for selection dialog	
Item Report	
O HTML Item Report	
○ Capital Cost Item Report	
C Reporter Report	
	L Apply L Halp

- **21.** Run a single item evaluation by clicking the **Evaluate** button in the Electrolyzer component form.
- **22.** Review the **Summary** tab and notice both Equipment and Civil costs were calculated.

Project Title:	NEW EXPANSION (9SEP1)	2)			
Project Location:	HOUSTON, TX		Prepared By: RO		(40,000 <i>)</i>
Job No:	JN0001		Est. Class SAM	IPLE	
Estimate Date:	8JAN24 12:25:13		Currency: DOL	LARS -\$-	<u> </u>
PEM Electrolyzer Tag No. PEM-100	Single	Compone Direct	nt Summary	osts	Componet ID 32
	MH	Labor	Mati	Total	Weight
(2) Equipment	460	16,752	7,600,000	7,616,752	46,000 LBS
(4) Civil	241	6,807	6,244	13,051	2,881 LBS
Component Totala	701	22.550	7 606 244	7 620 903	49 991 1 89

Summary General Data Sheet Installation Details

23. Switch to the **Installation Details** tab. Review all costs associated to the electrolyzer foundation.

	Project Ti Project Locati	itle: NEW EXPANSION (SSEP12)		Pre	pared By: RO		(
	Job	No: JN0001		1	Est. Class SAI	MPLE		
	Estimate Da	ate: 8JAN24 12:25:13		(Currency: DOI	LARS -5-		<u> </u>
		Single Component Installa	tion Det	ails				
PEM Elect	rolyzer (ID: 32)					Direct Instal	ed MH and C	osts
Location	COA Description	Item Description	Quanti	ty	MH	Labor	Mati	Tota
GENERAL	(103) Special Plant Item	PEM Electrolyzer	1	ITEM(S)	460	16,752	7,600,000	7,616,75
LG BLOCK	(447) Excavation	MACHINE EXCAVATION	49	CY	7	177		17
LG BLOCK	(447) Excavation	HAND EXCAVATION	1	CY	5	98		9
LG BLOCK	(458) Backfill	EXCAVATED SOIL	29	CY	2	34		3
LG BLOCK	(446) Concrete Pour And Finish	SEAL SLAB - TYPE A CONC.	1	CY	7	179	56	23
LG BLOCK	(444) Concrete	READY-MIX CONC TYPE B	22	CY			2,195	2,19
LG BLOCK	(446) Concrete Pour And Finish	POUR AND FINISH CONCRETE	22	CY	40	1,029		1,02
LG BLOCK	(454) Formwork Materials	CONTACT SURFACE FORMWORK	335	SF			201	20
LG BLOCK	(454) Formwork Materials	BRACING FORMWORK	627	BO FT			316	31
LG BLOCK	(455) Field Fabricate Formwork	FORMWORK FABRICATION	335	SF	39	1,092		1,09
LG BLOCK	(456) Install Formwork	FORMWORK INSTALLATION	335	SF	40	1,104		1,10
LG BLOCK	(457) Strip & Clean Formwork	STRIP AND CLEAN FORMWORK	335	SF	16	442		-44
LG BLOCK	(451) Rebar	REBAR INSTALL - TYPE S	1	TONS	39	1,302	1,756	3,05
LG BLOCK	(445) Grout	GROUT	0	CY	29	774	761	1,53
LC PLOCK	(452) Enundation Accessories	ANCHORS AND EMBEDMENTS	372	LBS	20	575	958	1.53

Since equipment weight data was added to the library, ACCE will be able to perform basic calculations for the equipment's foundation. If weight data is not provided, ACCE will not calculate any foundation.

- **24.** Close the current report and return to the component form for PEM-100.
- 25. Locate the cell **PWRDRVR** and enter a value of 30 HP [22 KV].

PEM Electrolyzer - Equipment Library Model			
Name	Units	Item 1	
Equipment class		SE	
Equipment type		ELECTROLY	
Material		SS	
Code of account		103	0
Icarus/User COA option			\sim
CAPACITY	KVA	6,000	
Currency unit for matl cost			\sim
Equipment cost	-\$-	7,600,000	
Setting labor hours		460	
Equipment weight	LBS	46,000	
Equipment setting option			\sim
Design gauge pressure	PSIG		
Design temperature	DEG F		
PWRDRVR	HP	30	
Equipment Footprint X	FEET		

- **26.** Click **Apply** and **Evaluate** the component once more.
- 27. Once the report launches, review the **Summary** tab and notice Electrical costs are now included.

28. Switch to the **Installation Details** tab and review all costs associated to the electrical cabling for the electrolyzer.

	Single Component Installation Details									
PEM Electrolyzer (ID: 33)						Direct Installed MH and Costs				
Location	COA Description	Item Description	Quantil	ty	MH	Labor	Matl	Total		
GENERAL	(103) Special Plant Item	PEM Electrolyzer	1	ITEM(S)	460	16,752	7,600,000	7,616,752		
LG BLOCK	(447) Excavation	MACHINE EXCAVATION	49	CY	7	177		177		
LG BLOCK	(447) Excavation	HAND EXCAVATION	1	CY	5	98		98		
LG BLOCK	(458) Backfill	EXCAVATED SOIL	29	CY	2	34		34		
LG BLOCK	(446) Concrete Pour And Finish	SEAL SLAB - TYPE A CONC.	1	CY	7	179	56	234		
LG BLOCK	(444) Concrete	READY-MIX CONC TYPE B	22	CY			2,195	2,195		
LG BLOCK	(446) Concrete Pour And Finish	POUR AND FINISH CONCRETE	22	CY	40	1,029		1,029		
LG BLOCK	(454) Formwork Materials	CONTACT SURFACE FORMWORK	335	SF			201	201		
LG BLOCK	(454) Formwork Materials	BRACING FORMWORK	627	BD FT			316	316		
LG BLOCK	(455) Field Fabricate Formwork	FORMWORK FABRICATION	335	SF	39	1,092		1,092		
LG BLOCK	(456) Install Formwork	FORMWORK INSTALLATION	335	SF	40	1,104		1,104		
LG BLOCK	(457) Strip & Clean Formwork	STRIP AND CLEAN FORMWORK	335	SF	16	442		442		
LG BLOCK	(451) Rebar	REBAR INSTALL TYPE S	1	TONS	39	1,302	1,756	3,059		
LG BLOCK	(445) Grout	GROUT	0	CY	29	774	761	1,535		
LG BLOCK	(452) Foundation Accessories	ANCHORS AND EMBEDMENTS	372	LBS	20	575	958	1,534		
MOTOR	(711) Wire/Cable - LV	8 AWG 600 V	1,020	FEET			813	813		
MOTOR	(711) Wire/Cable - LV	PULL IN CON 600V 8AWG	1,020	FEET	14	464		464		
MOTOR	(715) Terminators/Connectors	8 AWG LV-TERM	6	EACH	5	175	188	363		
MOTOR	(721) Conduit	0.75 IN DIA CONDUIT	330	FEET			759	759		
MOTOR	(721) Conduit	INSTALL CONDUIT 0.75IN	330	FEET	50	1,762		1,762		
MOTOR	(722) Conduit Fittings	0.75 IN DIA ELBOWS	4	EACH	1	20	19	38		
MOTOR	(722) Conduit Fittings	0.75 IN DIA FITTNGS	3	EACH	2	86	43	130		
MOTOR	(722) Conduit Fittings	0.75 IN DIA UNIONS	6	EACH	4	138	30	168		
MOTOR	(722) Conduit Fittings	0.75 IN DIA SEALS	3	EACH	2	74	60	134		
MOTOR	(722) Conduit Fittings	0.75 IN DIA COUPLING	10	EACH	1	49	19	69		
MOTOR	(722) Conduit Fittings	0.75 IN DIA BUSHING	2	EACH	1	25	4	29		
MOTOR	(714) Push Button Station	PUSHBUTTONS, PILOT LIGHTS	2	EACH	11	373	707	1,080		
PUSHB	(718) Wire/Cable - CV	14 AWG 600 V	1,440	FEET			392	392		
PUSHB	(718) Wire/Cable - CV	PULL IN CON 600V 14AWG	1,440	FEET	12	406		406		
PUSHB	(715) Terminators/Connectors	14 AWG CV-TERM	8	EACH	5	186	191	377		
PUSHB	(721) Conduit	0.75 IN DIA CONDUIT	350	FEET			805	805		
PUSHB	(721) Conduit	INSTALL CONDUIT 0.75IN	350	FEET	54	1,869		1,869		
PUSHB	(722) Conduit Fittings	0.75 IN DIA ELBOWS	4	EACH	1	20	19	38		
PUSHB	(722) Conduit Fittings	0.75 IN DIA FITTNGS	3	EACH	2	86	43	130		
PUSHB	(722) Conduit Fittings	0.75 IN DIA UNIONS	8	EACH	4	138	30	168		
PUSHB	(722) Conduit Fittings	0.75 IN DIA SEALS	3	EACH	2	74	60	134		
PUSHB	(722) Conduit Fittings	0.75 IN DIA COUPLNG	11	EACH	2	54	21	76		
PUSHB	(722) Conduit Fittings	0.75 IN DIA BUSHING	2	EACH	1	25	4	29		

This example PEM library includes a field corresponding to a Descriptive Parameter which uses the UOM info to automatically generate electrical bulks. If left empty, ACCE will not generate any cables/ wires. Note that even though some of these bulks are labeled as MOTOR, there are no actual additional motors included in the estimate.

- **29.** Close the PEM-100 report.
- **30.** Evaluate the full project. Ignore any warning messages that may appear.
- **31.** Open the following **Standard** reports:
 - Capital Cost Reports | Direct Costs | Cost / Quantity Rollups | Component (Maxiblock)
 - Other Reports | Project | Component Listings | Sorted by Installed Cost (Descending)

32. Locate the PEM Electrolyzer in both reports, you can use the tag (PEM-100) and the search box in the reports to make the search easier.

Project Title:	NEW EXPA	NSION (9SEP12)							
Project Location:	HOUSTON	тх			Prepared By:	RO		C.	
Job No:	JN0001				Est. Class:	SAMPLE			
Estimate Date:	8JAN24 13	142:21			Currency:	DOLLARS	-\$-		
Maxiblock - Component / Source Key Quantities									
Component / Source / Tag No.		Tinit		Wage	istaned wiri and Co	Unit			
Account	Key Qt	у МН	мн	Rate	Labor Cos	Matl	Matl Cost	Total Cost	
OVHDS. STORAGE TANK VT-108			16		Direct Installed Cost Multiplier = 2.15				
Pipe Insulation	542 FEE	ET 0.43	234	26.87	6,283	17.17	9,301	15,584	
Equip Insulation	7,691 SF	0.23	1,763	26.78	47,225	7.21	55,433	102,658	
Paint	18,132 SF	0.05	972	27.07	26,320	0.48	8,775	35,094	
Component / Source T	otals	-	7,130		202,320		664,271	866,590	
PEM Electrolyzer PEM -100			33		Direc	t Installed C	ost Multiplier =	1.01	
Equipment	1 ITE	M(S) 460.00	460	36.42	16,752	7,600,000	7,600,000	7,616,752	
Concrete	22.0 CY	9.69	213	28.36	6,033	250	5,483	11,516	
Grout	0.2 CY	167.65	29	27.15	774	4,477	761	1,535	
AG Electrical	2,460 FEE	ET 0.07	173	34.81	6,022	1.71	4,207	10,230	
Component / Source T	otals	-	874		29,582		7,610,451	7,640,033	
PERIMETER FENCING SD-201			29						
Other Sitework	1 LS		1,118	25.56	28,568		28,991	57,559	
Component / Source T	otals	-	1,118		28,568		28,991	57,559	

33. Open the following Excel report:

• Other Reports | Project | Equipment Summary

34. Locate the PEM Electrolyzer and review cost results.

Conclusion

When estimating electrolyzer units, there are a number of possibilities and variables to consider when trying to define the specifications of an electrolyzer. Regardless of all these possibilities, ACCE provides the capability to rigorously estimate these units along with their required installation bulks using Equipment Model Libraries. Be it a PEM type as shown in this guide or an alkaline type, the same method can be used to estimate these units.

The key to obtaining a reliable estimate is to keep consistency in the pricing data that is saved in ACCE, as well as selecting the most appropriate correlation between equipment capacity and its cost. In order to correctly estimate the corresponding installation bulks for electrolyzers, always consider the following:

- By default: Users cannot select a P&ID for EML items in a project.
 - Please contact Aspen Tech for more information on how to attach a Volumetric P&ID to an EML item.
- Piping and instrumentation bulks for EML items are not generated by default.
- The only bulks generated are:
 - Civil (Foundation) if weight is specified
 - Electrical (Motor wiring) if PWRDRVR parameter is specified.

About Aspen Technology

Aspen Technology, Inc. (NASDAQ: AZPN) is a global software leader helping industries at the forefront of the world's dual challenge meet the increasing demand for resources from a rapidly growing population in a profitable and sustainable manner. AspenTech solutions address complex environments where it is critical to optimize the asset design, operation and maintenance lifecycle. Through our unique combination of deep domain expertise and innovation, customers in capital-intensive industries can run their assets safer, greener, longer and faster to improve their operational excellence.

aspentech.com