



## 어려운 시기, 수많은 요구 사항

화학 공정 산업의 회사들은 글로벌 경제의 불확실성, 급변하는 시장 상황, 그리고 품질을 개선하고 출시 시간을 단축해야 하는 경쟁 압력으로 인해 생산 및 탄소중립(넷제로, Net-Zero) 목표를 달성하는 것이 더욱 어려워지고 있습니다. 이처럼 빠르게 변화하는 세계에서 경쟁하기 위해 화학 제품 제조사들은 운영 지출을 줄이면서도, 성능, 안전, 지속가능성, 장치 상태 및 전반적인 플랜트 효율성을 극대화하는 혁신적인 방법을 찾아야 합니다.

## 솔루션

Aspen Plus는 선도적인 프로세스 시뮬레이션 솔루션으로서, 플랜트 설계 및 운전 전반을 최적화함으로써 안전, 효율성, 장치 상태 및 수익성을 개선할 수 있도록 지원합니다.

지난 40여 간 축적해 온 혁신적인 성과와 전문산업 지식을 기반으로 개발된 이 강력한 모델링 기술을 통해 회분식, 연속, 회분식과 연속 운전이 혼합된 공정에서 생산량, 제품 품질, 에너지 사용량 등을 최적화할 수 있습니다.

## Aspen Plus를 이용한 설계 및 운전 전반 최적화



새로운 혁신 주도



공정 병목 제거



제품 개발 지원



변화하는 시장 상황에 신속하게 적응



최적의 공정 설계 달성



효율성 증대



혁신적인 기능들과 직관적인 사용자 인터페이스를 통해 사용자는 단일 환경에서 모델을 사용하여 모든 유형의 화학 공정을 신속하게 관리할 수 있습니다. 또한, 모델 기반 의사 결정을 통해 직원들의 역량을 강화함으로써 주요 지속가능성 목표에서 진전을 이루면서 플랜트 설계를 효율적으로 최적화할 수 있습니다.

## 보다 뛰어난 시뮬레이션을 통한 엔지니어링 간소화

플랜트 생산성 향상을 위해 무엇보다도 중요한 것은 플랜트 설계와 운전을 정확하게 재현하는 것입니다. 기업들은 설계를 개선하고 성능을 최적화하기 위한 통찰력을 개발하기 위해 공정을 모델링할 수 있는 솔루션을 필요로 합니다. Aspen Plus는 바로 이러한 목표를 달성하기 위한 솔루션으로, 화학 공정 라이프사이클 전반에서 발생하는 중요한 엔지니어링 및 운전 문제를 해결합니다.

Aspen Plus는 다음을 포함해 다양한 비즈니스 목표를 달성할 수 있도록 지원하고 있습니다.

탄소 발자국을 줄일 수 있도록 공정 설계와 운전 최적화

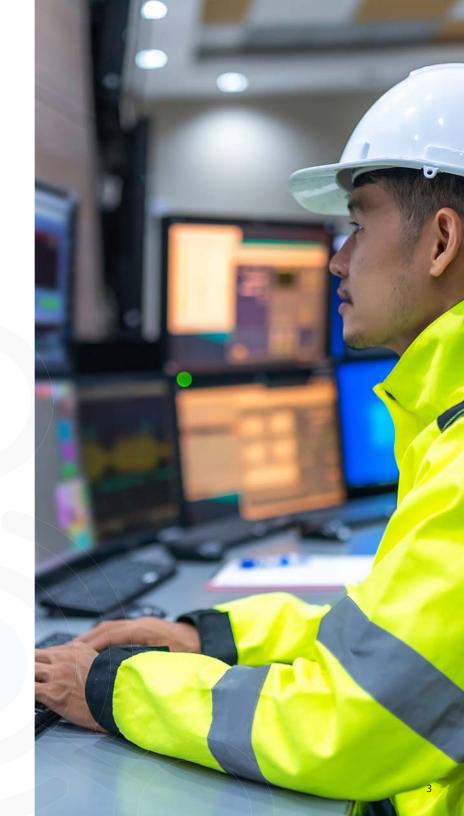
현실과 일치하는 강건한 모델을 통해 운전 의사 결정 향상

산업용 AI를 이용하여 정확하고 신뢰성 높은 모델을 신속하게 시뮬레이션

보존법칙(First Principles)을 기반으로 한 확고한 공정 모델링

입증된 모델과 데이터를 이용한 폴리머 생산 설계 및 최적화

회분식 공정 개발 단순화


최적의 증류 장치 성능 확보, 증류 장치 설계 최적화

솔리드 공정 설계, 최적화 및 확장

신속한 옵셔니어링(Optioneering)을 통한 투자 지출(CAPEX) 절감

공정 이상 방지 및 안전 사고 감소

특수 공정과 장치 설계 및 최적화



# 1 ▶ 지속가능성 가속화

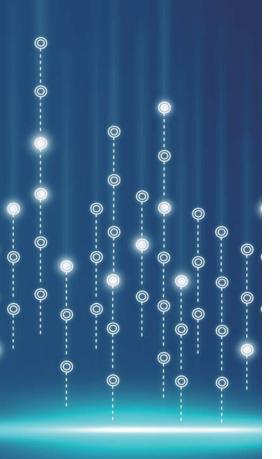
탄소 발자국을 줄일 수 있도록 공정 설계와 운전 최적화

- 지속 가능성 프로젝트의 실행 장벽을 극복하고 Scope 1 및 Scope 2 배출에 대한 신속한 통찰력을 확보함으로써 신규 및 기존 공정 개선
- 신규 공정 및 신기술의 시장 출시 시간 단축
- 열분해, 당분해 등과 같은 공정에 사전 보정된 모델을 활용하여 재료 순환
  사업 고도화
- 탄소 포집 공정의 개발, 최적화 및 확장
- 수소 경제를 위한 최적의 솔루션 개발
- 속도 기반 반응 모델을 적용한 정밀 생물반응기 모델링을 이용함으로써
  바이오 기반 공정의 혁신 가속화



#### 손쉬운 활용

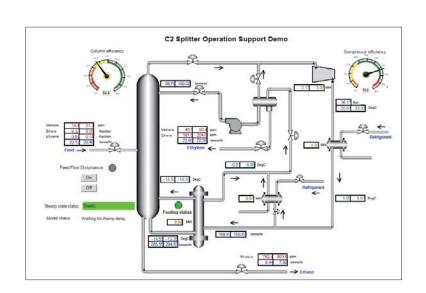
100개 이상의 사용하기 쉬운 사전 보정된 지속가능성 샘플 모델


#### 일관성

효율적인 기술-경제적 타당성을 위한 통합 툴

#### 강력함

강력한 수소 열역학, 새로운 바이오매스 라이브러리, 최신 표준에 기초한 배출량 계산






# 2 ► 운전 의사 결정 지원을 위한 디지털 트윈

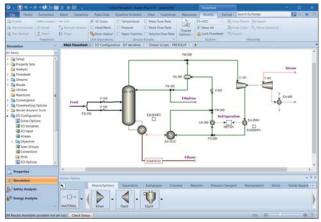
현실과 일치하는 강건한 모델을 통해 운전 의사 결정 향상

- 과거 공정 데이터 검증을 통해 도출한 공정 운전 지식을
  바탕으로 향상된 설계와 장치 개선을 위해 플랜트 데이터에
  맞춰 모델을 보정함으로써 현실에 맞는 모델 생성
- 입증된 엔지니어링 모델을 실시간 플랜트 데이터에 연결함
  으로써 가동 시간 및 생산수율(production rate) 향상
- 데이터 히스토리안(plant historian)과 모델을 연결하고 검증함으로써 온라인으로 모델을 적용하기 위한 만반의 준비를 갖춤
- 온라인 모델을 이용함으로써 증류 장치, 열 교환기 및 회전 장치에 대해 보다 나은 운전 의사 결정을 신속하게 수행



#### 통합

대규모 공정 내 정밀 열교환기 모델링


#### 혁신적

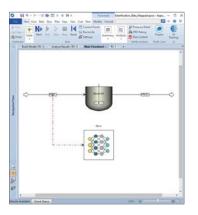
포괄적인 엄밀한 열교환기 세트

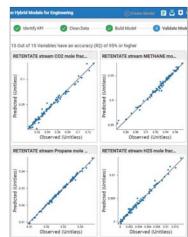
#### 데이터 기반

실시간데이터의 비교를 위해 방정식 지향적인 모델링(Equation

Oriented Modeling) 사용







# 3 ► Aspen Hybrid Models™

산업용 AI를 이용하여 정확하고 신뢰성 높은 모델을 신속하게 시뮬레이션

- 데이터, AI 및 엔지니어링 보존법칙(First Principles)의
  결합된 힘을 활용해 모델을 고객 플랜트성능에 맞춰 적용
- 다양한 운전 전반에서 99% 이상의 정확도로 모델
  생성
- 매우 정확한 디지털 트윈 모델로 운전 및 계획 의사 결정 향상
- 클로즈드 루프(Closed-loop) 최적화 내에 복잡한 단위 공정을 포함시켜 최적화 범위 확장







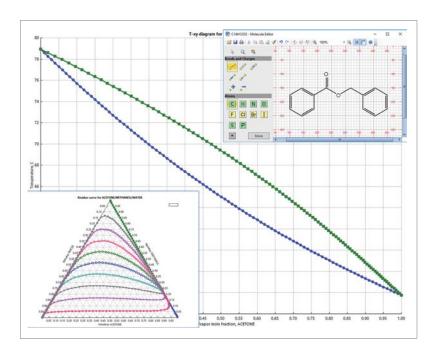
#### 빛나는 수상 경력

2021년 하이드로카본 프로세싱 (Hydrocarbon Processing) 매거진이 최고의 모델링 기술로 선정

#### 통합

통합 툴을 통해 운전 계획 및 최적화로 범위 확장

### 강력함


보존법칙(First Principles) 모델에 대한 40년 이상의 축적된 경험을 통해 지원 자세히 보기



# 최고의 물성 데이터베이스

보존법칙(First Principles)을 기반으로 한 확고한 공정 모델링

- Aspen Plus는 미국 국립표준기술연구소(NIST, National Institute of Standards and Technology)와 협력하여 개발한 가장 포괄적인 물성 데이터 세트를 보유하고 있는 것으로 화학 업계 전반에 알려져 있습니다.
- VLE 및 VLLE 데이터를 계산하는 예측 기반의 Peng-Robinson 통합을 포함해 다양한 방법론 및 광범위한 물성 데이터를 지원합니다.
- 반응 속도론, 열역학 데이터, 정밀 장치 모델 등을 통해 엔지니어들은 몇 개월의 시간을 절약하고 엔지니어링 정확성을 향상시키면서 실제 플랜트 운전을 시뮬레이션할 수 있습니다.
- Aspen Plus는 소프트웨어 분야의 혁신을 인정받아 R&D Magazine의 권위있는 R&D 100 어워드를 수상했습니다.



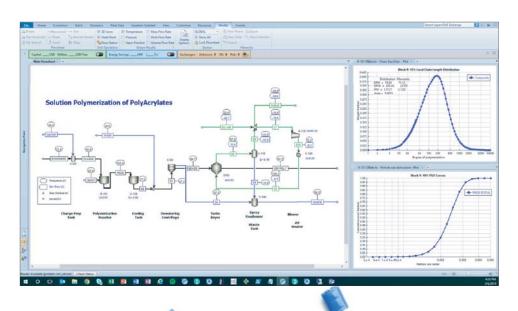
### 신뢰성

업계 표준

### 포괄적인 범위

광범위한 실험 데이터 및 방법론

#### 사용자 지정


기본 내장된 라이브러리에 사내 데이터 적용



# 5 ▶ 폴리머 공정 모델링

입증된 모델과 데이터를 이용한 폴리머 생산 설계 및 최적화

- 전체 폴리머 열역학 방법론 및 데이터 세트, 중합 반응 모델 및 산업별 공정 모델 라이브러리에 접근
- 벌크(Bulk) 및 에멀전(Emulsion) 라디컬 중합(free-radical polymerization), 지글러 나타 (Ziegler-Natta) 및 메탈로센 중합(Metallocene polymerization), 단계 성장 중합(Step-growth polymerization) 및 폴리머 열분해(polymer pyrolysis) 등을 위한 포괄적인 반응 동역학 모델 지원



#### 입증

완벽한 폴리머 반응 모델 세트

#### 탁월한 기능

광범위한 장치 모델을 이용한 솔리드 폴리머(solid polymer) 처리

#### 강력함

폴리머 물성에 대한 최신 모델



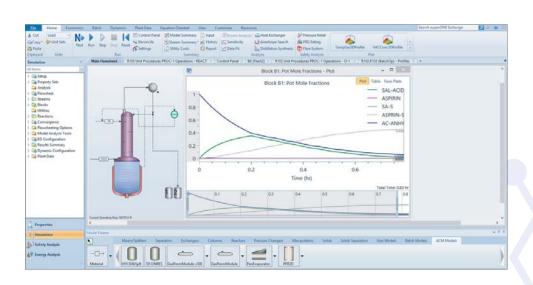


# 6 ▶ 회분식 공정 개선

회분식 공정 개발 단순화

- 동일한 엔지니어링 환경에 유체 및 고체를 포함한 회분식 및 연속 공정의 설계 및 최적화 지원
- Aspen Plus 내 회분식 모델링을 사용해 반응 속도론과 회분식 공정의 개념 설계, 분석 및 최적화를 결합
- 결정화, 건조, 여과, 증류 및 반응 등을 포함한 다양한 공정을 위한 신제품 개발 가속화
- 인터랙티브 운전 레시피 화면을 활용해 보다 신속하게 문제 해결

#### 통합


단일 환경 내에 회분식 및 연속 공정 통합

#### 일관성

공정 개발에서 설계 단계까지 포괄적인 툴 통합

#### 강력함

최고의 물성 라이브러리 지원



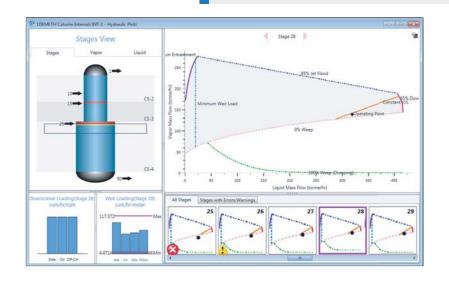


# 7 ▶ 증류 향상, 설계 및 개선 (Revamp)

최적의 증류 장치 성능 확보, 증류 장치 설계 최적화

- 증류 하이드롤릭(hydraulic) 시각화 기능을 이용하여 설계 및 운전 조건 변경이 증류 장치 성능에 어떤 영향을 미치는지를 신속하게 평가
- 2세대 속도 기반 계산 기능을 사용하여 증류탑 분리 효율성을 정확하게 예측
- 기본 내장된 트레이, 패킹 라이브러리와 신뢰할 수 있는 상관 관계를 이용해 증류 장치의 설계와 평가 실행




선명하고 유용한 하이드롤릭 플롯 (Hydraulic Plot)

#### 간소화

워크플로우 안내가 포함된 하나의 툴 사용

#### 검증

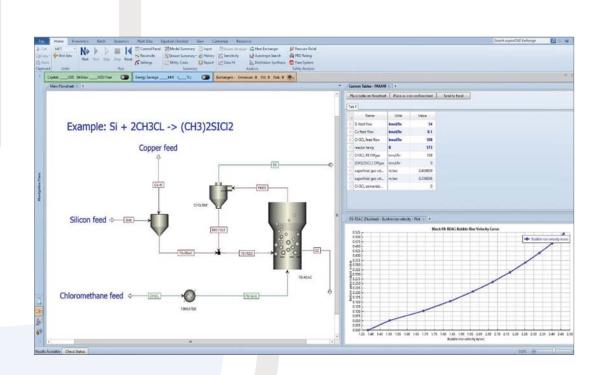
공급 업체 툴과의 비교 테스트를 완료한 상관 관계



# 8 **솔리드 공정 최적화** 솔리드 공정 설계, 최적화 및 확장

- 건조기, 제립기(Granulator), 결정기, 유동층, 분쇄기, 가스/고체 및 액체/고체 분리기, 분류기 및 PCS (Pneumatic Conveying Systems) 등 솔리드 단위 공정 작업의 포괄적인 라이브러리 활용
- 투자 및 에너지 비용을 절감하면서도 일관된 입도 분포 보장
- 입도 분포, 수분 함량 및 분리 효율성의 예측과 시각화

#### 용이한 접근


내부 전문가와 함께 성장하는 모델

#### 정확성

정밀한 PSD 및 건조 처리

### 포괄적인 범위

다양한 장치 모델과 정확도





신속한 옵셔니어링(Optioneering)을 통한 투자 지출(CAPEX) 절감

#### **Activated Economic Analysis**

■ 개념 설계 중 모델 기반 상대적 비용 산정 평가

#### **Activated Energy Analysis**

- 에너지 사용 최적화를 위한 설계 변경 검토
- 에너지 비용 및 온실 가스 배출량 평가
- 핀치이론(pinch theory)을 이용한 열/냉각 수요 비교

#### **Activated Exchanger Design and Rating**

- 공정 제약 조건에 따라 정밀한 열 교환기 모델 조건 지정 또는 설계
- 시뮬레이터 환경에서 나가지 않고도 열 교환기 성능을 최적화하고 문제 해결
- 공정 엔지니어와 장치 전문가들이 효율적으로 협업할 수 있도록 지원 \_\_\_\_\_\_

## 확장성

볼륨 경제성 모델(volumetric economic modeling)을 기반으로 개발된 설계 툴

#### 높은 경제성

설계 시 투자 지출(CAPEX)을 고려한 경제성 확보

#### 일관성

반복(iteration) 작업의 시간을 줄이는 통합 툴







# 10 ▶ 공정 안전 분석

공정 이상 방지 및 안전 사고 감소

- 원활한 스타트업과 셧다운 및 운전 변경을 위해 일시적인 플랜트 가동 특성을 사전에 계획
- 전문가가 신뢰하는 계산 기능과 워크플로우 안내가 포함된 완벽한 과압 차단 솔루션을 이용함으로써 투자 지출(CAPEX) 절감 및 엔지니어링 시간 단축
- 역학 연구를 통해 도출한 통찰력을 활용하여 에너지 및 재료 사용을 최소화하면서 장치 및 플랜트의 안전, 운전 용이성 및 제어 가능성을 보장하고 잠재적인 고장을 줄임
- 공정 안전 밸브 사이즈의 결정 및 평가, 다양한 시나리오 하에서 배출 부하 계산, 반응 압력 배출 검토

| Scenario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stream       |                         | Rules          | Flash Options  | Reactions | Comment |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------|----------------|----------------|-----------|---------|
| ressure reli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ef scenario  | -                       |                |                |           |         |
| ) Steady st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ate flow rat | ing of relief system    |                |                |           |         |
| Steady st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ate flow rat | ing of relief valve     |                |                |           |         |
| Dynamic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | run with v   | essel engulfed by fire  |                |                |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | pecified heat flux into | vessel         |                |           |         |
| 160 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                         |                |                |           |         |
| Specifications —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                         | C-4-           |                |           |         |
| Capacity option<br>/ent discharge pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                         | Code           |                |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                         | 1              | 5 psia         | •         |         |
| stimated flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ow rate      | Mole *                  |                | lbmol/hr       | ·Y        |         |
| y 200y 020y 000g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                         | FS: E - Dynami | Sessits Vessel |           | _       |
| - ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                         |                |                |           |         |
| 36 526 100<br>28 527<br>36 627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11           | 1                       |                |                | /         | 4100    |
| 230 5.30 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111          | /                       |                |                |           |         |
| 220 010 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1            |                         |                |                |           | -       |
| 120 - 210 - 200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - |              | - ACC                   | -              |                |           |         |
| 130 6.70 200<br>130 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /            |                         |                |                |           |         |
| 16 18 16 16 16 16 16 16 16 16 16 16 16 16 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | /            |                         | -              | _              | _         |         |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                         |                |                |           |         |

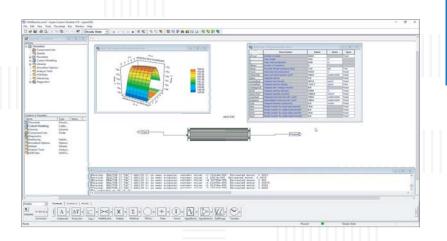
#### 정확성

정밀하고 검증된 계산

#### 간소화

툴 간의 자동 데이터 전송

#### 입증


산업 안전 표준을 준수하도록 보장하고 문서를 생성합니다.



# 11 커스텀 장치 최적화

특수 공정과 장치 설계 및 최적화

- Aspen Custom Modeler®를 이용해 높은 정확도의 자체 장치 모델 라이브러리 개발
- Aspen Plus 내에서 커스텀 모델의 생성, 수정, 컴파일 및 배포
- 정상 상태(steady-state) 및 동적 계산 시뮬레이션



### 전문성

화학 엔지니어를 위해 설계된 강력한 모델링 언어

## 유연성

자체적으로, 또는 Aspen Plus 또는 Aspen HYSYS® 내부에서 사용

### 강력함

최고의 물성 라이브러리 지원

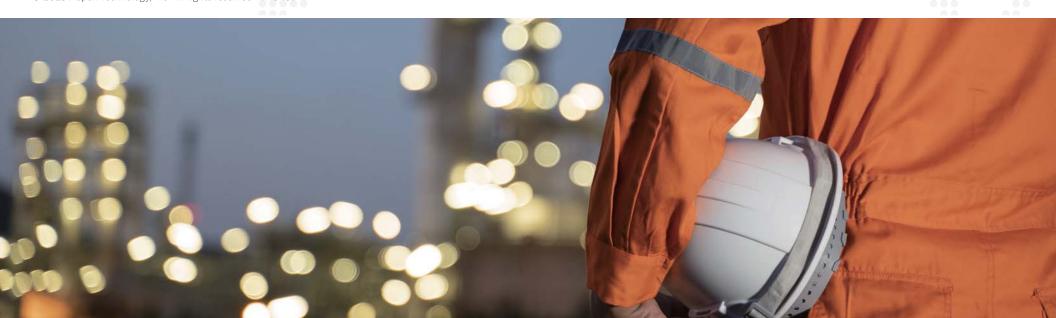
## 결론

Aspen Plus는 선도적인 프로세스 시뮬레이션 소프트웨어로서, 수십 년 간축적된 경험과 선도적인 화학 회사들의 피드백, 저명한 상을 수상한 물성데이터베이스를 기반으로 개발되었습니다. 경제성 평가, 에너지 절감, 안전 및 배출량 분석 등을 결합한 통합 공정 모델링 툴을 통해 사용자들은 공정 자산의 전체 라이프사이클 전반에서 가치를 확보할 수 있습니다. 데이터 및 머신러닝과 보존 법칙(First Principles)의 기반을 결합한 아스펜테크 시뮬레이터의 최신 혁신 기술을 활용하여 사용자들은 실제 플랜트 가동 특성을 정밀하게 표현하는 모델을 개발할 수 있습니다.

이러한 정확한 고정밀 모델들을 활용함으로써 기업들은 신규 공정의 시장 출시 시간을 가속화하고, 장치 및 공정 효율성을 향상시키는 동시에 지속가능성 성과를 시각화하고 향상시킬 수 있습니다.

자세한 내용은 aspentech.com/aspenplus에서 확인하실 수 있습니다.






### 아스펜 테크놀러지 소개

아스펜테크놀러지(NASDAQ: AZPN, 이하 아스펜테크)는 전 세계적으로 고객 기업들이 당면해 있는 이중적 과제, 즉, 지속가능한 사업모델로 전환하고 급속한 인구 증가에 따른 수요 증가에 대응해야 한다는 두가지 과제를 해결할 수 있도록 돕는 글로벌 소프트웨어 기업입니다. 아스펜테크의 솔루션들은 공정 자산의 설계, 운전 및 유지관리 라이프 사이클을 최적화하는 것이 필수적인 복잡한 환경에서 사용되고 있습니다. 아스텐테크가 축적해온 전문산업 지식과 혁신적인 성과들을 통해, 고객들은 설비 자산을 오랜 기간에 걸쳐 보다 안전하고, 친환경적이며, 민첩하게 가동할 수 있으며 궁극적으로 오퍼레이셔널 엑셀런스를 향상시킬 수 있습니다.

aspentech.com

© 2023 Aspen Technology, Inc. All rights reserved. AT-0459

